A novel deep learning based peer‐to‐peer transaction method for prosumers under two‐stage market environment
نویسندگان
چکیده
With the development of electricity market, peer-to-peer (P2P) transaction plays an important role in promoting local consumption renewable energy and arousing enthusiasm prosumers. However, due to diversification prosumers, confidentiality information interaction between there are increasing challenges for traditional model-based optimisation methods both P2P modelling model solution accuracy. Therefore, this paper proposes a novel method based on deep learning under two-stage market environment, which uses data-driven approach build behaviour public information. The neural network Long Short-Term Memory (LSTM) is utilised characterise prosumers transactions effectively. Based model, plans bids optimised accordingly. Through simulation test example system with six results show that established can well represent proposed effectively improve efficiency economic benefits providing reference decision-making transactions.
منابع مشابه
Deep learning-based CAD systems for mammography: A review article
Breast cancer is one of the most common types of cancer in women. Screening mammography is a low‑dose X‑ray examination of breasts, which is conducted to detect breast cancer at early stages when the cancerous tumor is too small to be felt as a lump. Screening mammography is conducted for women with no symptoms of breast cancer, for early detection of cancer when the cancer is most treatable an...
متن کاملA Novel Radar Signal Recognition Method based on Deep Learning
Radar signal recognition is of great importance in the field of electronic intelligence reconnaissance. To deal with the problem of parameter complexity and agility of multi-function radars in radar signal recognition, a new model called radar signal recognition based on deep restricted Boltzmann machine (RSRDRBM) is proposed to extract the feature parameters and recognize the radar emitter. Th...
متن کاملEfficient Method Based on Combination of Deep Learning Models for Sentiment Analysis of Text
People's opinions about a specific concept are considered as one of the most important textual data that are available on the web. However, finding and monitoring web pages containing these comments and extracting valuable information from them is very difficult. In this regard, developing automatic sentiment analysis systems that can extract opinions and express their intellectual process has ...
متن کاملA Novel Fuzzy Based Method for Heart Rate Variability Prediction
Abstract In this paper, a novel technique based on fuzzy method is presented for chaotic nonlinear time series prediction. Fuzzy approach with the gradient learning algorithm and methods constitutes the main components of this method. This learning process in this method is similar to conventional gradient descent learning process, except that the input patterns and parameters are stored in mem...
متن کاملA novel method for detecting structural damage based on data-driven and similarity-based techniques under environmental and operational changes
The applications of time series modeling and statistical similarity methods to structural health monitoring (SHM) provide promising and capable approaches to structural damage detection. The main aim of this article is to propose an efficient univariate similarity method named as Kullback similarity (KS) for identifying the location of damage and estimating the level of damage severity. An impr...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: IET smart grid
سال: 2022
ISSN: ['2515-2947']
DOI: https://doi.org/10.1049/stg2.12078